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Abstract
A class of Euler flows of an ideal incompressible liquid is considered. The
total kinetic helicity is invariant for barotropic inviscid flow under conservative
body forces. The topological structure of vortex lines are classified by Hopf
indices, Brouwer degrees and linking number in geometry. A new mechanism
of generation and annihilation of a vortex line is given. The evolution equation
of the vortex line has been given and its splitting behavior at the critical
points is also discussed in detail. Three length approximation relations in
the neighbourhood of singular points are given: l ∝ (t − t∗)1/2, l ∝ t − t∗,
l = const.

PACS numbers: 47.20.Ky, 47.32.−y, 02.10.Kn

1. Introduction

Vortex dynamics plays an important role in airfoils [1], fluid dynamics [2], magneto-
hydrodynamic [3, 4], samll scale turbulence and astrophysics [5, 6]. The vorticity field is
a solenoidal field and will not have the field line with end points within the flow. Thus, it
is convenient to study the evolution of vortex lines in terms of certain topological indicators
of closed curves. The most important topological invariant for the vortex lines is the kinetic
helicity, which is a topological invariant for barotropic inviscid flow under conservative body
forces [7]. The kinetic helicity results from Kelvin theorem on circulation and measures the
entangledness of the vortex lines. It is the simplest measure of topological complexity of an
advected fluid. It characterizes the internal structure of the vortex tubes (twisting, torsion and
kinking) and also the external relationships among the tubes themselves, such as linking and
knotting of vortex tubes. Helical flow structures exist in nature where free shear flows occur,
such as in tornadoes and storm systems. Helical modes are also known to be important in
the wakes of axisymmetric bodies when the angle of attack is nonzero. Helical structures can
spontaneously emerge from nonhelical (mirror symmetric) states due to the growth of unstable
modes. Such breakdown of the mirror symmetry can occur in a rotating flow since the rotation
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vector provides a preferred direction and can lead from a nonhelical state to a helical flow.
This can be of primary importance for the α dynamo effect [8] where helical fluctuations can,
under certain conditions, amplify the mean magnetic field.

It is known that the equations of an ideal incompressible liquid, i.e. the Euler equations,

∂V
∂t

+ V • �V + �p = 0, div V = 0, (1)

are Hamiltonian equations [9]. The Hamiltonian structure can be easily introduced in terms
of vorticity Ω = rot V, determined from the equation

∂Ω
∂t

= rot[V,Ω], (2)

where the square brackets denote the vector product of the two-vector velocity and vorticity.
In this case,

∂Ω
∂t

= {Ω,H }, (3)

where the Hamiltonian H is the energy of the system,

H =
∫

1

2
V2 d3x, (4)

and the Poisson brackets for any two functions F and G are defined by

{F,G} =
∫ (

Ω,

[
rot

δF

δΩ
, rot

δG

δΩ

])
d3x. (5)

Here, δF/δ�, δG/δ� are variational derivatives, and round brackets are defined as a dot
product. The given form possesses all the necessary properties of Poisson brackets. This
form is antisymmetric and satisfies the Jacobi identity. Hence, equation (2) is a Hamiltonian
equation.

The liquid flow topology can be characterized by a kinetic helicity � as

� =
∫

(V,Ω) d3x. (6)

The kinetic helicity � is an invariant [7] for both incompressible and compressible polytropic
nonmagnetized flows in conservative forces and in a compact domain, which is a direct
consequence of the Thompson theorem [10].

In the present work, we consider a class of Euler flows of an ideal incompressible liquid
and focus on the kinetic helicity. In section 2, we classify the topological structure of the
vortex lines in terms of Hopf index, Brouwer degree and linking number in geometry. We
discuss the evolution equation of the vortex line in terms of n-field [11]. In section 3, we give
a new mechanism of generation and annihilation of vortex lines. In section 4, we study the
bifurcation [12] behavior of Euler flow at the bifurcation point in detail. There are four cases
and three kinds of length approxiamtion relation.

2. Topological structure of the vortex lines

Following Faddeev [11], the transverse field Ω can be expressed in terms of the n-field [13]

�i = Aεijk(n · [∂j n, ∂kn]), i, j, k = 1, 2, 3, (7)

where n2 = 1, A is a dimensional constant that does not depend on the time or the coordinates.
Volovik and Mineev have shown [14] that for the quantum case, A = h̄/4m. The above formula
gives the transition from a differential relationship between the components of the vorticity



Bifurcation of vortex lines in Euler flow 9591

field div Ω = 0 to an algebraic one n2 = 1. For the given class of flows, R3 is isoporphic to
S3, i.e., the problem of classification of flow is that of classification of smooth maps S3 → S2.
These maps are characterized by a homotropic group π3(S

2) = Z, i.e. any class of flows is
determined by the integer values that represent the linking number for the two curves n(r) = n1

and n(r) = n2, and consequently, for the two vortex lines corresponding to these curves. This
index for smooth maps S3 → S2 is called the Hopf invariant which can be expressed via the
map n(r) [15]. The unit vector field n is a section of sphere bundle S2.

We define two two-dimensional unit vector e1, e2 in S2, which are normal to each other,
i.e.,

e1 · e2 = e2 · n = e2 · n = 0

e1 · e1 = e2 · e2 = n · n = 1.
(8)

It is easily obtained that n · [∂j n, ∂kn] = 2εab∂j e
a
1∂ke

b
2. Then the velocity field V can be

written as [11, 16]

V = 2Ae1 · �e2. (9)

Let us consider a two-dimensional order parameter ψ = (ψ1, ψ2) in a plane formed by unit
vectors e1, e2, which satisfies

ea
1 = ψa

‖ψ‖ , ea
2 = εab ψa

‖ψ‖ , a, b = 1, 2, (10)

where ‖ψ‖ = (ψaψa)1/2, and ε is the Levi-Civita antisymmetric tensor. The zero points of
the order parameter are just the singular points of e1 and e2. The velocity V can be expressed
by

V = 2Aεab ψa

‖ψ‖� ψb

‖ψ‖ . (11)

The transverse field can be written now in terms of the ψ field

�i = 2Aεijkεab∂j

ψa

‖ψ‖∂k

ψb

‖ψ‖ . (12)

Using the relation

∂b

ψa

‖ψ‖ = ∂bψ
a

‖ψ‖ − ψaψb

‖ψ‖3 , ∂a∂a ln‖ψ‖ = 2πδ2(ψ), (13)

the transverse field becomes

�i = 8πAδ2(ψ)Di

(
ψ

x

)
, (14)

where [17, 18]

Di

(
ψ

x

)
= 1

2
εijkεab∂jψ

a∂kψ
b, i, j, k = 1, 2, 3, a, b = 1, 2. (15)

Equation (15) tells us that the transverse field,

�i = 0 only if ψ �= 0,

�i �= 0 only if ψ = 0.
(16)

In appendix A, we calculate it in detail. Then we can obtain∫
Mk

�i dσi = 8πAβkηk. (17)
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Here σ is the surface surrounded by the vortex. Substituting equation (17) into equation (6),
one can obtain

� = 8πA

N∑
k=1

βkηk

∫
Lk

Vi dxi. (18)

When these vortex lines are closed curves, i.e. a family of knots ξk(k = 1, 2, . . . , N),
equation (18) becomes

� = 8πA

N∑
k=1

βkηk

∮
ξk

Vi dxi. (19)

In appendix B, we have calculated equation (19) in detail. Then we obtain the important result

� = 64π2A2

[
N∑

k=1

βkηkS(ξk) +
N∑

k,l=1

βkηkL(ξk, ξl)

]
. (20)

The first term is the self-linking number S(ξk) of the vortex line ξk; the second term is the
Gauss linking number L of the vortex lines ξk and ξl . We denote the total topological number
C of vortex lines configuration as

C =
N∑

k=1

βkηkS(ξk) +
N∑

k,l=1

βkηkL(ξk, ξl), (21)

which is a Hopf invariant, and is also called a topological charge by Faddeev. Then

� = 64π2A2C. (22)

This result is correct in either quantum case [14] or classical fluid [7]. It is obvious that
8πAβkηk (A = h̄/4m) in the quantum case corresponding to the classical flux strength χ of
the vortex. If there are N filaments with strength χk (k = 1, 2, . . . , N)) whose self-knottedness
degree, i.e. βk = 1 in a classical fluid, the kinetic helicity equals

64π2A2
N∑

k,l=1

ηkL(ξk, ξl) =
N∑

k,l=1

χkχlηkηlαkl

(αkl = 1 if two vortex lines ξk, ξl are linked, αkl = 0 if ξk, ξl are not singly linked). The kinetic
helicity is an invariant for both incompressible and compressible polytropic nonmagnetized
flows in conservative forces and in a compact domain. In the next two sections we will discuss
bifurcation behavior of vortex lines in Euler flow, which keep the kinetic helicity invariant.

In this section, the topological structure of the vortex line is studied under the regular
condition, i.e., D(ψ/x) �= 0. When the regular condition fails, the branching of vortex line
will occur. This will be discussed in sections 3 and 4.

3. Branching of vortex lines

The evolution equation of the vector field n has been obtained [13] by Kuznetsov et al i.e.,

∂n
∂t

+ V · �n = 0. (23)

It is also a Hamiltonian:

∂n
∂t

=
[

n,
δ(H/A)

δn

]
. (24)
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The evolution of the vortex line can be discussed from equation (14). For simplicity, we
fix the x3 = z coordinate and take the XOY plane as the cross section. The intersection line
between the vortex line evolution surface and the cross section is just the motion curve of the
vortex line. In this two-dimensional case, the vorticity becomes [18]

�3 = 8πδ2(ψ)D

(
ψ

x

)
(25)

and

�i = 8πδ2(ψ)Di

(
ψ

x

)
, i = 1, 2. (26)

where D
(

ψ

x

) = εab∂1ψ
a∂2ψ

b, D1
(

ψ

x

) = εab∂2ψ
a∂tψ

b, D2
(

ψ

x

) = εab∂tψ
a∂1ψ

b.
It is obvious that the continuity equation is satisfied:

∂t�
3 + ∂i�

i = 0. (27)

The velocity of the intersection point of the vortex line and the cross section is given as

dxi

dt
= Di

(
ψ

x

)
D

(
ψ

x

) . (28)

From equation (28), we know that when D
(

ψ

x

) = 0 at the very point (t∗, x∗), the velocity
dx1

dt
or dx2

dt
is not unique in the neighborhood of (t∗, x∗). This critical point is called the branch

point [19, 21], which is also called the singularity point by Kerr et al. At the critical point,
the normal velocity can not be defined, which is also pointed out by other physicists [3, 18].
Because of the conservation of vortex circulation, it should branch or split [19, 20]. Taking
the Taylor expansion of the solution of ψ at the critical point, one can obtain the direction of
the zero point on the cross section at the critical point. Let us do that in the following. If we
assume that D2

(
ψ

x

)
(t∗,x∗) �= 0, then there are usually two kinds of branch points, namely the

limit points where D1
(

ψ

x

)∣∣
(t∗,x∗) �= 0 and the bifurcation points where D1

(
ψ

x

)
(t∗,x∗) = 0. In

this section, we discuss only the branching process of the vortex lines at the limit point. When
D1

(
ψ

x

)∣∣
(t∗,x∗) �= 0, we obtain from equation (28)

dx1

dt
= D1

(
ψ

x

)
D

(
ψ

x

) ∣∣∣∣
(t∗,x∗)

= ∞, (29)

i.e.,
dt

dx1

∣∣∣∣
(t∗,x∗)

= 0. (30)

Taking the Taylor expansion of t = t (x1, t) at the limit point of the vortex line, one can obtain

t − t∗ = 1

2

d2t

(dx1)2

∣∣∣∣
(t∗,x∗)

(x1 − x1∗)2, (31)

which is a parabola in x1 − t plane. From equation (31) one can obtain two solutions, which
give the branch solutions of the vortex line at the limit points. If d2t

(dx1)2

∣∣
(t∗,x∗) > 0, we have the

branch solutions for t > t∗; otherwise, we have the branch solutions for t < t∗. The former
is related to the origin of the vortex line at the limit points. From the continuity equation, we
know that the topological number of the vortex line is identically conserved. This means that
the total topological number of the final vortex lines equals that of the initial vortex lines. The
total numbers of these two generated vortex lines must be zero at the limit point, i.e. the two
generated vortex lines have to be opposite, i.e.,

β1η1 + β2η2 = 0. (32)
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It is a process of generation or annihilation of vortex lines [22–24]. At the neighborhood of
the limited point, we denote length scale l = �x = x − x∗,�t = t − t∗. From equation (31),
one can obtain the approximation relation

l ∝ ‖t − t∗‖1/2. (33)

The growth rate γ = l
�t

or the annihilation rate of the vortex lines

γ ∝ (t − t∗)−1/2. (34)

It is obvious that Ek ∝ (t − t∗)−1 [25]. This result is obtained in the neighborhood of the
limited point. Then it is correct locally. This result agrees with the numerical data [26, 27].

4. Bifurcation of vortex lines

Now let us study the bifurcation of vortex line at its bifurcation point where D1
(

ψ

x

)∣∣
(t∗,x∗) = 0.

The Taylor expansion of the solution of ψ1 and ψ2 in the neighborhood of the bifurcation
point can generally be denoted as F(x1 − x1∗)2 + 2B(x2 − x2∗)(t − t∗) + C(t − t∗)2 + · · · = 0,
where F,B and C are three constants. Here we assume that F �= 0; then from the Taylor
expansion, we can obtain

F

(
dx1

dt

)2

+ 2B
dx1

dt
+ C = 0. (35)

There are four kinds of important cases.

Case 1. F �= 0, (B2 − FC) > 0. We get two different directions of vortex lines

dx1

dt

∣∣∣∣
(t∗,x∗)

= −B ± √
B2 − FC

F
. (36)

It is the intersection of two vortex lines, which means that the two vortex lines meet and then
depart from each other at the bifurcation point.

Case 2. F �= 0, (B2 − FC) = 0. The direction of the vortex lines is the only one,

dx1

dt

∣∣∣∣
(t∗,x∗)

= −B

F
, (37)

which includes three important situations: (a) one vortex line splits into three vortex lines; (b)
two vortex lines merge into one vortex line and (c) two vortex lines tangentially intersect at
the bifurcation point.

Case 3. F = 0, (B2 − FC) �= 0 (or B �= 0), C �= 0. We have

dt

dx1

∣∣∣∣
(t∗,x∗)

= −B ± √
B2 − FC

C
= 0, −2B

C
. (38)

There are two important cases: first, one vortex line splits into three at the bifurcation point;
second, three vortex lines merge into one at the bifurcation point.

Case 4. F = C = 0. We obtain
dt

dx1

∣∣∣∣
(t∗,x∗)

= 0, or
dx1

dt

∣∣∣∣
(t∗,x∗)

= 0. (39)

At the neighborhood of the bifurcation point, we denote the scale length as �x = l. From
equations (36)–(38), we can then obtain the approximation asymptotic relation

l ∝ (t − t∗). (40)
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The growth rate γ , or the annihilation rate of the vortex line, is

γ ∝ const. (41)

From equation (39), one can obtain

l = const, γ = 0. (42)

It is obvious that vortex lines are relatively at rest when l = const.

5. Conclusion

In the present study, a class of Euler flows of an ideal incompressible liquid is considered.
The kinetic helicity of vortex lines is classified by the Hopf index, Brouwer degree and linking
number in geometry. A mechanism of generation and annihilation of vortex lines is given in
section 3. The evolution equation of a vortex line has been given and its bifurcation behavior
at the bifurcation points is also discussed in detail in section 4. We give three kinds of
length scales in the neighborhood of the singularity point, i.e., l ∝ (t − t∗)1/2, l ∝ t − t∗,
l = const. It is obvious that length scales in the branching case are different from those in the
the bifurcation case. Because length scales are obtained in the neighborhood of the singularity
point, the relations are correct locally. These are different from the length scales in statistical
measurement.

Since the kinetic helicity � is invariant for the barotropic inviscid flow under conservative
body forces, the sum of the final vortex topological number must be equal to that of the original
vortex lines at the bifurcation points. This relation and the critical condition determine the
bifurcation situation of the vortex lines. The bifurcation behavior becomes complicated for
the entangledness of the vortex lines.

Finally, it should be pointed out that in this paper we discussed the bifurcation of vortex
lines in Euler flows of an ideal incompressible liquid. In many other cases fluid has viscosity,
and are governed by the Navier–Stokes equation. The basic energy estimate shows that for
fixed initial data, smooth Navier–Stokes equations converge to a solution of the Euler equation
as the viscosity tends to zero. In our method, the bifurcation of vortex in Navier–Stokes flow
will also appear. But the A is no longer constant in equation (7), i.e., A is varied because of
dissipation. I hope that this case may be discussed in further papers.
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Appendix A

Under the regular condition

D

(
ψ

x

)
�= 0, (A.1)

the general solution of

ψ1(t, x1, x2, x3) = 0, ψ2(t, x1, x2, x3) = 0 (A.2)

is just the vortex line. The kth vortex line Lk can be expressed by the line parameter s:

x1
k = x1

k (t, s), x2
k = x2

k (t, s), x3 = x3
k (t, s). (A.3)
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The δ-function theory [28] tells us that

δ2(ψ) =
N∑

k=1

βk

∫
Lk

δ3(x(s))∥∥D
(

ψ

u

)∥∥
Mk

ds, (A.4)

where

D

(
ψ

u

)
= 1

2
εij εab ∂ψa

∂ui

∂ψb

∂uj
, i, j = 1, 2, a, b = 1, 2, (A.5)

and Mk is the kth planar element transverse to the vortex line Lk with local coordinates (u1, u2).
The positive integer number βk is the Hopf index, which means that when x covers the zero
point once, the vector parameter field ψ covers the corresponding region in ψ space βk times.
In Moffatt’s paper [7], βk is also called winding number traced from Gauss. The direction of
vector vortex line is given by

dxi

ds
= Di

(
ψ

x

)
D

(
ψ

u

) . (A.6)

Then from equations (A.4) and (A.6), the transverse field Ω can be written as

�i = 8πA

N∑
k=1

βkηk

∫
Lk

dxi

ds
δ3(x − xk(s)) ds, (A.7)

where ηk = sgn D
(

ψ

u

) = ±1. It is the Brouwer degree of the ψ mapping, which characterizes
the direction of the vortex line.

Hence, ∫
Mk

�i dσi = 8πAβkηk. (A.8)

It is just equation (17).

Appendix B

Linking numbers are the simplest topological relation between two closed curves; this number
is zero for two un-linked curves. In order to discuss the linking numbers of the knotted vortex
lines, we define the Gauss mapping:

ñ : S1 × S1 → S2, (B.1)

where ñ is a unit vector

ñ(x, y) = xk − xl

‖xk − xl‖ , (B.2)

where xl and xk are the two points, respectively, on the knotted vortex lines ξl and ξk . When
xl and xk are the same point on the same vortex line ζ, ñ is just the unit tangent vector.
When xl and xk cover the corresponding vortex lines ξj and ξk, ñ becomes the section of the
sphere bundle S2. As in the above section, we can define two two-dimensional unit vectors
ẽ = ẽ(xl , xk). ẽ, ñ are normal to each other, i.e.,

ẽ1 · ẽ2 = ẽ2 · ñ = ẽ2 · ñ = 0,

ẽ1 · ẽ1 = ẽ2 · ẽ2 = ñ · ñ = 1.
(B.3)

In fact, the velocity V can be expressed as

Vi= 2Aεabea∂ie
b, a, b = 1, 2. (B.4)
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Substituting it into equation (19), one can obtain a new expression of the kinetic helicity

� = 16πA2
N∑

k=1

βkηk

∮
ξk

εab ea(xl , xk)∂i eb(x, y) dxi . (B.5)

It can also be written as

� = 16πA2
N∑

k,l=1

βkηk

∮
ξk

∮
ξl

εab∂i ea(xl , xk)∂j eb(x, y) dxi ∧ dxj . (B.6)

There are three cases: (1) ξk, ξl are different vortex lines, and xl , xk are different points; (2)
ξk, ξl are the same vortex line, and x, y are different points; (3) ξk, ξl are the same vortex line,
and xl , xk are same point. Thus, equation (B.6) can be written as

� = 64π2A2

{
1

4π

N∑
k=1(x�=y)

βkηk

∮
ξk

∮
ξk

εab∂i ea(xl , xk)∂j eb(x, y) dxi ∧ dxj

+
1

4π

N∑
k=1(x=y)

βkηk

∮
ξk

εab∂i ea(xl , xk)∂j eb(xl , xk) dxi ∧ dxj

+
1

4π

N∑
k,l=1

βkηk

∮
ξk

∮
ξl

εab∂i ea(xl , xk)∂j eb(xl , xk) dxi ∧ dxj

}
. (B.7)

The first term is just the writhing number [29] wr(ξk) of vortex line ξk . The second term is
the twisting number Tw(ξk) of the vortex line ξk . From White’s formula [30], the self-linking
number S(ξk) of the vortex line ξk is given as follows:

S(ξk) = wr(ξk) + Tw(ξk). (B.8)

The third term is the Gauss linking number L of the vortex lines ξk and ξl , i.e.,

L(ξk, ξl) = 1

4π

N∑
l=1

βkηk

∮
ξk

∮
ξl

εab∂i ea(xl , xk)∂j eb(xl , xk) dxi ∧ dxj , k �= l. (B.9)

We then obtain the important result

� = 64π2A2

[
N∑

k=1

βkηkS(ξk) +
N∑

k,l=1

βkηkL(ξk, ξl)

]
, (B.10)

which is equation (20).
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